
Appendix A: KSL Brochure 5 P41 RR0078516

managerial posts and conference chairmanships in both the American
Association for Artificial Intelligence (AAAI) and the International Joint
Conference on Artificial Intelligence (IJCAI).
Several KSL faculty and former students have received significant honors. In
1976, Ted Shorthffe received the Association of Computing Machinery Grace
Murray Hopper award. In 1977, Doug Lenat was given the IJCAI Computers
and Thought award, and in 1978, Ed Feigenbaum received the National
Computer Conference.Most Outstanding Technical Contribution award. In
1979 and 1981, Ted Shortbffe’s book Computer-Based Medical Consultation:
MYCIN was identified as the most frequently cited work in the IJCAI
proceedings. In 1982, Doug Lenat won the Tioga prize for the best AAAI
conference paper while Mike Genesereth received honorable mention. In
1983, Ted ShortlifZe was named a Raiser Foundation faculty scholar, and
Tom Mitchell received the IJCAI Computers and Thought award. In 1984,
Ed Feigenbaum was elected a fellow of the American Association for the
Advancement of Science (AAAS), and he and Ted Shorthffe were elected
fellows of the American College of Medical Informatics(ACMI). Larry Fagan
was elected a fellow of ACMI in 1985. In 1986, Ed Feigenbauxn was elected to
the National Academy of Engineering and in 1987, Ted Shortliffe was elected
to the Institute of Medicine of the National Academy of Sciences. The
American Association for Medical Systems and Informatics Young
Investigator Award for Research in Medical Knowledge Systems was
presented to Glenn Rennels in 1988 and to Mark Musen in 1989.

KSL Research Environment
Funding-The KSL is supported solely by sponsored research and gift funds.
We have had funding from many sources, including DARPA, NIH/NLM,
ONR, NSF, NASA, and private foundations and industry. Of these, DARPA
and NIH have been the most substantial and long-standing sources of
support. Ah, however, have made complementary contributions to
establishing an effective overaIl research environment that fosters
interchanges at the intellectual and software levels and that provides the
necessary physical computing resources for our work.
Computing Resources-Under the Symbolic Systems Resources Group, the
KSL develops and operates its own computing resources tailored to the needs
of its individual research projects. Current computing resources are a
networked mixture of personal workstations, Lisp workstations, and central
host computers and network utility servers, reflecting the evolving hardware
technology available for AI research. Our central host is currently a Sun
4/280 running Sun Unix 4.0 (this is the core of the national SUMEX
biomedical computing resource). It provides a central service for remote
network access, electronic mail storage and routing, large-scale file storage,
and printer spooling services. Increasingly, computing functions, such as
electronic mail reading and composition, text processing, and information
retrieval, are being moved to distributed user workstations. Our Lisp
workstations include 34 Texas Instruments Explorers, 2 Symbolics 3600-

E. H. Shortliffe 226

5 P41 RR00785-16 Appendix A: KSL Brochure

series machines, 3 SUN 3/75 workstations, and 4 NeXT machines. Much of
the routine computing is done with 80 Apple Macintosh II computers, 15 of
which have Texas Instruments microExplorer Lisp co-processor boards.
Network printing, file storage, Internet gateway, and terminal interface
services are provided by dedicated machines including a VAX 111750, a SUN
3/180, and numerous special-purpose microprocessor systems. These
facilities are integrated with other computer science resources at Stanford
through an extensive Ethernet and to external resources through the
ARPANET, TELENET, and the BARRNet (Bay Area Regional Research
Network) link to the NSFNet. Funding for these resources comes principally
from DARPA and NIH and hardware vendor gifts.

227 E. H. Shortliffe

5 P41 RR00785-16 Appendix B: Lisp Performance Studies

Appendix B: Lisp Performance Studies

Perfo rmance of Two Common Lisp Programs
On Several Systems (Report KSL 89-02)

by Richard Acuff

Abstract
To assist in the evaluation of Lisp platforms for the Stanford University
Knowledge Systems Laboratory, 22 Common Lisp implementations were
benchmarked. Run time and compilation time data on two moderate-sized
application programs are presented, along with data on the effect of compiler
optimization levels and on the impact of display VO on run time. For these
Lisp benchmarks, several systems did not rank where we expected them
based on speed ratings using other conventional measures. Also, the
rankings of machines by Lisp speed differed for the two programs we tested
The data indicate that the performance of Lisp systems is very application
dependent. Software environment should play at least as strong a role in
machine selection as performance benchmarks.

1. Introduction
At Stanford University’s Knowledge Systems Laboratory (KSL), a large
amount of software is written in Lisp. Thus, the performance of Lisp systems
is often crucial to the productivity of the lab. In order to assist us in
understanding the performance of different Lisp systems, we have
undertaken an informal survey of 22 Common Lisp implementations using
two software packages developed in the KSL. The main goal of this survey
was to understand the execution speed performance of systems that we might
use in the KSL for research and development or dissemination of research
results. Secondary goals were to evaluate the effect of compiler optimizer
settings on execution speed and to evaluate the effect of reducing the amount
of output on execution speed.
There have been a number of projects to measure the performance of Lisp
systems. Gabriel’s work [Gabriel 19851 is probably the best known, and is the
origin of the so-called “Gabriel Benchmarks”, a set of small test programs for
measuring specific aspects of Lisp system performance. The Gabriel
benchmarks are extremely valuable, for people trying to compare Lisp
systems, if used knowledgeably. However, the aspects of a Lisp system
stressed by a particular program are often difficult to determine so that it is
usually best, where possible, to run that program on the systems in question
rather than attempting to dissect the program and forecast its performance
analytically. Also, with the advent of numerous implementations of Common
Lisp [Steele 19841, we can now use much larger test programs without the
bother and uncertainty of porting between dialects.
In this survey we have focused on execution speed which has long been an
important criterion for comparing computer systems. The first comparison of

229 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

two systems solving the same problem (benchmarking) was probably made
shortly after the creation of the second computer, and benchmarking has
been a primary differentiator among computer systems ever since. However,
execution speed benchmarks are only one aspect of the performance of
systems, especially Lisp systems. Issues like programming and user
environments, compatibility with other systems, the ability to handle “large”
problems, and cost (hardware, software, and human) must also be considered,
and, given a machine that is “fast enough”, these other issues will almost
always be the overriding factor.
Descriptions of the programs used in this evaluation are given in Section 2. A
description of the methodology used in performing the tests is in Section 3,
and information about the Lisp systems tested is in Section 4. Data on the
execution speed of the test programs are presented in Section 5, followed by
compilation speed data and a comparison between compilation speed and
execution speed in Section 6. The effect of choosing various values for the
SPEED and SAFETY options of the OPTIMIZE declaration on the BBl
system are discussed in Section 7. The effect of reducing the screen output of
the SOAR benchmark is presented in Section 8. Details of the test
procedures and descriptions of the systems tested are in the appendices.

2. Test Software
The software systems used in these tests were SOAR [Laird 19871 and the
BBl blackboard core [Hayes-Roth 1985 and Hayes-Roth 19881. These test
programs were chosen primarily because they are implemented in pure
Common Lisp, making them extremely portablel. Both are systems in daily
use in the KSL but represent two distinct research directions in terms of
program function and structure. These systems were initially developed in
environments other than those tested, and no attempt was made to optimize
their performance for any of these tests. Neither of these systems is an
intensive user of numeric computation.
A copy of the Common Lisp source code used for these tests may be obtained
from the author by sending U.S. Mail to “Richard Acuff, Stanford KSL, 701
Welch Road, Bldg. C, Stanford, CA 94305” or electronic mail to
“acuf@SUMEX-AIM.Stanford.EDU”.

1 There were one or two small porting difficulties that were traced to problems in the test
code which had to be fured. For instance, many systems allow (I NTE RN ” MA ME ”
’ USER) where others require (INTERN “NFIME” (F I ND-PACKAGE “USER”) >.
Also we were unable to get SOAR to work in either versions 1.0 or 1.1 of Allegro Common
Lisp for the Mac II due to unexplained software hangs so it is omitted from SOAR-related
charts.

E. H. Shortliffe 230

5 P41 RROO785-16 Appendix B: Lisp Performance Studies

2.1. SOAR
SOAR is a heuristic-search based general problem solving architecture
developed by Paul Rosenbloom, et. al. See [Laird 19871 for more information
on the SOAR system.
All test runs of SOAR were done solving an eight-puzzle problem in one of
three modes: Mode A (simply solve the problem), Mode B (solve the problem
while “chunking” or “learning”), and Mode C (solve the problem after having
“learned” in Mode B).
An “eight puzzle” is a common children’s game with 8 tiles, numbered 1 to 8,
on a 3 by 3 grid such that a tile adjacent to the empty place can be pushed
into it. “Solving the eight-puzzle problem” consists of producing a series of
tile moves such that, f.?om a given arbitrary starting configuration, the eight
puzzle ends up with all the tiles in numerical order, reading from the upper
left around the puzzle clockwise, with the empty place in the middle.
The version of SOAR used was 4.4.4, dated April 19, 1987. It consists of 1
large LISP source file and 2 small SOAR files containing productions for
solving the eight-puzzle problem. The LISP source is 10,661 lines (280,050
characters) of lightly commented code.

2.2. BBl
BBl is a blackboard-based problem solving architecture developed by
Barbara Hayes-Roth. For more information on the BBl blackboard core, see
[Hayes-Roth 19851. For furth er information on BBl, see [Hayes-Roth 19881.
All references to BBl in this document refer only to the “core” blackboard
parts of the system and do not include any other layers of the problem solving
architecture or the user interface, as these components are not in pure
Common Lisp. All test runs of BBl went through three cycles of adding 10
items to the blackboard, accessing those 10 items, and then deleting them.
The version of BBl used was 1.2. The LISP source used consists of 10 files
ranging from 36 lines (814 characters) to 3,396 lines (107,528 characters) of
lightly commented code, with a total of 8,722 lines (295,199 characters) of
code.

3. Methodology
All the tests were performed in as near to a “normal” working environment as
could be achieved. We tried to duplicate the working conditions that a
researcher would likely have both in hardware and software. Where possible
we selected test machines configured with the amount of memory, amount
and type of disk, type of display, etc. that a typical developer would purchase
and use. We ran the software in a way that a developer using the system
would probably use it. Thus, if it was normal to run with garbage collection
enabled, under a window system, within an editor, or in a multi-
programming environment, then that was done. For instance, Sun machines
were tested under SunView with a couple ofperfmeters running. The HP

231 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RR0078516

machine was tested while running in GnuEmacs onX10. MIT-style Lisp
machines were run with all networking and other background processing on,
and no special process priority. No expert tuning or system configuration was
done beyond what the tester could do by reading over the user
documentation. AI1 systems were tested in single-user mode, which is the
way those tested are normally used for Lisp work.
We feel that although this methodology results in less repeatable and less
explainable results, it gives a good approximation to what the end user will
experience. Where time allowed, multiple runs were made to ensure accura
readings. Unfortunately the collection of the raw data (i.e. arranging for
machine access and making the timed runs) proved to be an extremely time
consuming process, taking a day or more for some of the systems, so the
information in this report was collected over a long period of time (October,
1987 to January 1989) and some of the data may be dated by now.

.te

The procedures used for running the tests are fully described in Appendix B.
The TIME macro was used to collect timing information. Most times were
recorded to the nearest second. When reported by the TIME macro, some
extra information, usually relating to paging, memory management, “kernel”
time, etc., were recorded, but are not analyzed here. If several runs were
made, only the best number is reported herein for the sake of brevity.
Wherever possible, source files were stored on local disks (for the Sun 3M5
systems the files were on a Sun 3080 NFS server on the same subnet).

4. Systems Under Test
The systems that we tested were chosen based on their availability to the
testers as well as their suspected usefulness in future KSL programming
efforts. All of the systems tested were workstations, as we were not able to
obtain access to mainframe systems. It is also the case that workstations,
with their bit-mapped displays and dedicated processors, currently provide
the best Lisp development environments, in our opinion, and thus were more
interesting to us.
A mnemonic code is used for each of the 22 systems. Usually the code is the
model of the machine except where there is more than one Lisp for a machine
(as in the case of the Sun 3/75) in which case a letter is prefixed to indicate
the Lisp being used. Table 1 gives a mapping between codes and machine
types. See Appendix A for detailed descriptions of system configurations.

5. Execution Speed
Most of the tables and charts in this report refer to elapsed-times (wall-clock
time) in seconds. Most of the tables and charts have the system types
ordered according to what seems to be the most interesting comparison. We
have attempted to group systems of allegedly comparable performance
(according to our perception formed from talking to vendor representatives,
talking to other users, reading reports, etc.)

E. H. Shortliffe 232

5 P41 RR00785-16

Code
3/260
3/60
386
3861‘
4/260
4/280
DEC-II
DEC-III
E-317 5

EXPl
EXP2
EXP2+
F-4/280

&75
L-3175
Mac2

Maci

RT
SYm
XCL

Test Date
Summer 1988
Summer 1988

Spring 1988
Spring 1988

Summer 1988
Winter 1988

Fall 1987
Fall 1987
Fall 1987

November 1988
November 1988
November 1988

January 1989

Fall 1987
Fall 1987

Summer 1988
Spring 1988

December 1988
November 1988

Spring 1988
Winter 1988
Winter 1988

Appendix B: Lisp Performance Studies

Svstem Tvne
Sun 3/260 with Lucid Lisp1
Sun 3/60 with Lucid Lisp-
Compaq 386 with Lucid Lisp
Compaq 386 portable with Lucid Lisp
Sun 4/260 with Lucid Lisp
Sun 4/280 with Lucid Lisp
DEC MicroVax II with VaxLisp
DEC MicroVax III with VaxLisp
Sun 3/75 with Franz Extended Common
Lisp
Texas Instruments Explorer I
Texas Instruments Explorer II
Texas Instruments Explorer II Plus
Sun 4/280 with Franz Allegro Common
Lisp
Hewlett Packard 9000/350
Sun 3/75 with Kyoto Common Lisp
Sun 3/75 with Lucid Lisp
Apple Macintosh II with Allegro
Common Lisp
Symbolics MacIvory
Texas Instruments microExplorer
IBM RT/APC with Lucid Lisp
Symbolics 3645
Xerox 1186

Table 1: Mapping between codes and system types

It is worth noting that on almost all of the systems tested, virtual memory
paging was a negligible part of the overall run time for the tests. Nor was it a
very significant factor during compilation. In general, we do not expect this
to be true for most production systems. Indeed, we would not be surprised if
paging time were a major component of overall run time for most systems.

5.1. BBl
The data for the run times of the BB12 tests are given in Table 2. Figure 1
shows the data graphically.

1 The Lucid and Franz Extended Common Lisp products tested are versions prior to multi-
programming within the Lisp and prior to the inclusion of generation-based scavenging
garbage collection in those systems. The Allegro Common Lisp was not tested with
multiprogramming enabled.

2 These times are for default settings of the SPEED and SAFETY optimization qualities
discussed in Section 7.

233 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

Code
Exp2

Exp2+
4/260
4/280
-4/280

386
3861’

Maci
ss?n

3/260

Run Time
27

ii
34
56
47

:t
129
111
62

%F
DEC-III

Expl
3/60

L-3175
E-3/75
K-3/7 5

HP
DEC-II

XCL
Mac2

Table 2: Run times for BBl

Run Time

ii:
a7
73
90

211
96
115
207
559
254

4/260
4/280

F-4/280
386

306T
mx

Maci

Svm
3/260

RT
DEC-I II

Exp I
3/60

L-3/75
E-3/75
K-3/75

HP
DEC-I I
Mac2

Figure 11 BBI Run (set)

0 60 120 I00 240
I I I I

Exp2 I I

Exo2+ Note XCL has been left out to improve readi ability

Systems that are marketed as comparable generally came out close to each
other with the following notable exceptions:
l There was a significant difference between the 4/280 and the 4/260. Even

though the 4/260 had more memory, similar disk, more tuning effort, and
was tried with several later versions of Lisp it was consistently slower
than the 4/280 tested earlier. We are at a loss to explain this discrepancy.

E. H. Shortliffe 234

5 P41 RR00785-16 Appendix B: Lisp Performance Studies

It is also worth noting that, except for VaxLisp, Lucid Lisp seemed the
most difficult to tailor to a particular machine when it was being installed.

. The DEC machines seem to be poor at running Lisp even though they are
usually thought of as competitive when running FORTRAN or C.

l The microExplorer (mX> did better than expected probably because its
weak point, paging, was not stressed by this test.

. The much older Franz Lisp (E-3/75) did relatively poorly compared to
Lucid Lisp on the 3/75, but the newer version on the Sun 4 did well
relative to the somewhat older Lucid lisp on the Sun 4.

l XCL was over twice as slow as the nearest competitor.
l For unknown reasons the Symbolics machines were slower than expected.

The MacIvory was a bit over 4 times slower than the microExplorer and
the 3645 was slower than the Explorer I.

5.2. SOAR
The data for the SOAR run tests are given in Table 3 and presented
graphically in Figure 2. The figures are for the sum of the A, B, and C
modesl.
Once again most systems fit where expected with the following notes:
l The Lucid Sun 4’s are somewhat faster than the TI Explorer II for the

SOAR test whereas the opposite was true for the BBl test.
l XCL and DEC-II were over twice as slow as the nearest other system.

Code
Exp2

Exp2+
4/260
4/280
-4/280

386
3861’

Maci
SYm

3i260

Run Time
94
62
58
82
120
126
151
154
339
193
154

DEC-III

Code

Expl
3i60

RT

L-3/75
E-3/75
K-3/75

HP
DEC-II

XCL
Mac2

454

Run Time

369
187
278

177

484
697
219

1851
1519

No data (see
footnote 1)

Table 3: Aggregate Run Times for SOAR

1 The A and C mode figures are for the “no trace” configuration as described in Section 8.

235 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RR00785-16

0 60 120 180 240 300 360 420 480 540 600 660 720

Exp2 'I

Exp2*

41260

41280

F-41280

386

386T

mx

Maci

Svm

31260

RT

t

I I

I 1

Note:DEC-II.Mac2,and XCL have
been left out to lm we readabllit\

DEC-III

Expl

3160

L-3175

E-3/75

K-3/75

HP

Figure 2. Sum of SOAR run imes (see)

5.3. Normalized Run Times
A given machine, call it A, may have run the SOAR test faster than another
machine, B, while B was faster for BBl. Figure 3 depicts this difference. For
both BBl and SOAR the run times have been normalized by dividing the run
time by the average of the run times for all the machines, leaving out DEC-II,
Mac2, and XCL to improve readability.
Lucid Lisp seemed to perform relatively better with SOAR than with BBl in
all cases, while VaxLisp and, to a much lesser extent, the dedicated Lisp
machines, seemed to do better with BBl.
There are many possible explanations for these variations, but trying to
analyze each of them was well beyond the scope of this study. The reasons
are most likely a result of differences among implementations in the
efficiency of various operations, some of which are used by SOAR but not by
BBl and vice versa. For instance, SOAR might make heavy use of hashing

E. H. Shortliffe 236

5 P41 RROO785-16 Appendix B: Lisp Performance Studies

Exp2

Exp2+

41260

41280

F-41280

386

386T

mX
AR Run Times

? (I normal) syste m performance

iote, DEC-I I, Mak2, and XCL havk
been left out to

I

Maci

wm

31260

RT

DEC-I I I

Exp I

3/60

L-3/75

E-3/75

K-3/75

HP

prove readabl im

Figure 3 Normalized Run Times (time/average-time)

while BBl makes heavy use of list primitives, or one system might include a
large number of SETQ operations while the other might be more applicative
in nature. The developers of SOAR and BBl do not currently have
information on the aspects of the Lisp systems stressed by their software.

6. Compilation Speed
Developers and researchers must worry about how fast their programs
compile as well as how fast they run. SOAR and BBl compilation times are
given in Table 4 and Figure 4.
Figures 5 compares run time with compile time. The ratio of compilation
time to run time is shown. A system with a high rating spends relatively
more time compiling than running. The absolute value of these numbers
have little meaning. They are only useful for comparing systems.

237 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RR0078516

Code
Exp2
Exp2+
4/260
4l280
F-4/280
386
386T

Maci
SP
3/260

%F liu 89

37087
76
324

523 482
535 264
386 355
479 416
152 186
906 950
252 257
687 540

EP
DEC-III
Expl
3/60
G3/75
E-3175
K-3/75

EC-11
XCL
Mac2

Table 4: Compilation Times

0 180 360 540 720 900 1080 1260
t

Exp2

Exp2*
41260
41280

F-4/280
386

386T

I I
881 Complle Time

I I
SOAR Compile Time

mX

31260
RT

OK-I I I
EXP 1
3/60

L-3175
E-3/75
K-3/75

HP
OK-I I

XCL
Mac2

423
520
569
1040
450
1365
237
1227
1800

0

BB1
586
633
327
551
919
444
1234
235
1774
1927
349

1440 1620 1800 1980

1 I
- I /2 hour

Flgure 4: Compllatlon Time (set)

As one might expect, the specially microprogrammed Lisp machines had
relatively fast compilers. Some machines with run times slower than
predicted spent relatively less time compiling. For example, the VaxLisp
compiler was relatively fast, but generated very slow code. The Lucid
compiler seemed to take a long time but generated fast code. The Allegro

E. H. Shortliffe 238

5 P41 RR00785-16 Appendix B: Lisp Performance Studies

0 2 4 6 8 10 12 14

Exp2
Exp2+

386T
mX

Mac1

W
31260

RT
OEC-I I I

Expl
3160

L-3/75

E-3/75
K-3/75

HP

OEC-I I
XCL

Mac2

Flgure 5: Relatlve Performance of Compiler
(Compile-Tlme/RukTlme)

Common Lisp for the Mac II took little time but still somehow generated
impressively fast code for BBl.

7. Effect of OPTIMIZE Settings on BBl
The OPTIMIZE declaration is a way of controlling the behavior of a Common
Lisp compiler. Two of the most significant qualities thus controlled are
SPEED and SAFETY. Each of these can be set to an integer from 0 to 3. A
high setting for SPEED tells the compiler that fast running code is desired,
which typically enables various optimizations. The Common Lisp
specification doesn’t require any optimizations or even that they necessarily
be controlled by this setting, but many current implementations switch on
optimizers such as dead code eliminators, tail and mutual recursion
eliminators, fancy register allocators, and facilities to take advantage of type
declarations. The SAFETY quality is somewhat less well understood. It has
little to do with the “safety” of the program since a correct Common Lisp
program is still required to run correctly if SAFETY is low, but it has an
impact on the debuggability of the program. A high SPEED and low SAFETY
may allow, for instance, disabling number-of-arguments checking to allow

239 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5P41RROO785-16

faster function calls on some architectures, or type checking on system
functions (such as CAR or SETQ) might be disabled. Kyoto Common Lisp
(KCL) goes so far as to “hardwire” function calls such that if FOO calls BAR
and FOO is compiled then if BAR is later redefined and FOO isn’t, FOO will
continue to call the old version of BAR, thereby destroying much of the
flexibility of the Lisp.
We chose 4 settings of SPEED and SAFETY to study:
1. The default setting that the Lisp system has when it is initialized. This is

what most people use.
2. SPEED 3, SAFETY 0 (written (3,O) below) which should generate the

fastest code.
3. SPEED 0, SAFETY 3 (written (0,3) below) which should generate slow

but very debuggable code, since the compiler should have done very few, if
any, optimizations.

4. SPEED 3, SAFETY 2 (written (3,2) below) which should generate
optimized code while retaining “sanity checks”.
The BBl system used in these tests has very few declarations and does little
numerical work. Both of these attributes seem common among most
Common Lisp programs we use.

Code
E&P2
Exp2+
4/260
4/280
F-4/280
386
3861'

Maci
SP
3/260
RT
DEC-III
Expl
3/60
L-3175
E-3175
K-3/75
HP
DEC-II
XCL
Mac2

Default
27
17
56
34
56
47
54
33

129
111
62
75
63
87
73
90

211
96

115
207
559
254

17 18
46 47
34 48
56 56
47 52
54 60
34 34

129 130
109 110
62 69

i! ;:
87 90
72 76
90 127

215 206
165 147
113 141
206 231
543 559
258 261

18
46
34
54
47
54
30
130
111
62

;Fi
83
72
90

206

l”l”s
236
556
259

Table 5: BBl Run Times for Various OPTIMIZE Settings

E. H. Shortliffe 240

5 P41 RR0078516 Appendix B: Lisp Performance Studies

Table 5 and Figure 6 give the results for running BBl with the four
OPTIMIZE settings. Figure 7 shows the compilation times for the various
OPTIMIZE settings.

Exp2*

4/260

41200

F-4/280

386

386T

mX

Mac1

Wm

31260

RT

DEC-I I I

3/60

E-3175

HP

Mac2

I I
I I

Note: XCL has been left out
to Irnf ce readabllit’

q Default

0 (3,O)

I (0, 3)

jgj (3, 2)

Figure 6: 881 runs with variousOPTIMIZE settings (SeC)

241 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

0 500 1000 1500 2000 2500 3000

Exp2

ExQZ+

4/260

4/260

‘-41200

366

mX

Mac1

31260

RT

DEC-III

Expl

3160

I
a

I
3

E-3175

K-3/ 75

HP

Mac2

q Default

0 (3,O)

I (0, 3)

q (3, 2)

Flgure 7 BE1 compllatlon times with various OPTIMIZE
settings (set)

These charts reveal somewhat surprising results. In several cases, SPEED 3,
SAFETY 0 did not give the best results! Lucid Lisp did consistently better
when SPEED was higher than SAFETY, as did the HP 9000, and VaxLisp.
KCL was definitely behaving strangely with SPEED 0, SAFETY 3 coming out

E. H. Shortliffe 242

5 P41 RR00785-16 Appendix B: Lisp Performance Studies

a good bit faster than SPEED 3, SAFETY 0, with both of those much slower
than “default” or SPEED 3, SAFETY 2.
Figure 8 depicts the speedup factor between the slowest time and the fastest
time for the BBl tests with various OPTIMIZE settings.

1 .oo 1.10 1.20 I .30 1.40 1.50 1.60 I .70 I .I30 1.90 2.00

Exp2
Exp2+

41260
41280

F-41280
386

386T
mX

Maci
%m

31260 f
AT

DEC-III
EXP I
3160

L-3/75
E-3/75
K-3/75

HP
DEC-II
Mac2

XCL

Flgure 8 BBI Speedup Factors Due to OPTIMZE Settmgr

8. Effect of Output Reduction on SOAR
The eight-puzzle benchmark for SOAR was originally written when SOAR
ran primarily on slower machines than those tested here. Thus it tends to
generate a lot of output relative to the amount of computation for some of the
modes. For some systems, particularly those with large bit-mapped displays
and full-screen windows, this output can be very expensive. To understand
the extent of this effect we tested SOAR in the A mode and in the C mode
both with full output, and with greatly reduced output (no trace). Table 6
with Figures 9 and 10 show results of these runs. Figure 11 depicts the
amount of speedup (ratio of run times) realized by SOAR with reduced
output.

243 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

Code
E-2

E2qj2+
4/260
4/280

F-4/280
386

386T

Maci
SP

3/260

DE7111
E-1
3/60

L-3175
E-3/75
K-3/75

DE11
XCL

Table 6: SOAR Run Times with Full and Reduced Output

23

E
36
41
52
50

165
55
49
61
95

iii:
82

124
186
61

351
473

Reduced
18
11
13

i:
27
31
27
65
40
33
36
76
63
38
67

109
136
51

283
390

u
18
13
11
14
20

3;

:i
34
23

E
75
34
45
81

120
52

390
243

Reduced
16
11
9
11
19
19
23
27
44
32
22

fit
71
31
41
80

111
52

401
232

Mode A Mode B
Full

33

0 60 120 180

Exp2
Exp2+

41260

Note DEC-I I, XCL, and MaC2 have
been left off to Improve readabIlIty

41280
F-41280

386
386T

mX
Maci
sym

31260
RT

DEC-III
Exp I

3160
L-3175
E-3175
K-3175

HP

Figure 9. SOAR A Mode (set)

E. H. Shortliffe 244

5 P41 RROO785-16 Appendix B: Lisp Performance Studies

0 10 20 30 4 50 60 70 80 90 100 1 IO 120

Exp2

Exp2+

41260

41280

F-41280

386

386T

mX

Mac]

Sym
3/260

RT

DEC-III

Exp I

3160

L-3175

E-3175

K-3175

HP

I I I I
I 1 I

Note. DEC-II, XCL, and Mac2 have

been left off to II -0ve r

Figure 10, SOAR C Mode (set)

I .oo 1.20 1.40 1.60 I .00 2.00 2.20 2.40

Exp2

Exp2+
41260

41280

F-41280

386
386T

mX

Mac)

Sym
31260

RT
DEC-III

Exp I

3160
L-3/75
E-3/75

K-3/75

HP

DEC-II

XCL

I I
I
I

x ’ C mode

I
A mode

Note. No results f
I I I

jablIlt

Mac2 (see-footnote 1
I

Flgure 1 I SOAR Speeaup Due to Reduced Output

245 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RROO785-16

Three factors seemed to influence the speedup with reduced output:
l A fast processor, since the amount of time spent computing versus doing

I/O would be reduced, causing a reduction in I/O time to be more
significant.

l A larger screen or window since it is expensive to scroll a large area.
. A large-overhead I/O system such as the MacIvory’s Dynamic Windows.

9. Future Work
Obvious areas in which this work might be extended include:

Updating the results to reflect more recent versions of the Common Lisp
systems;
Adding more test systems, especially mainframes;
Benchmarking other programs besides SOAR and BBl;
Evaluating the effect of declarations on run times;
Adding measurements of storage management overhead;
Collecting more data on I/O overhead;
Understanding better why platforms vary in performance from application
to application and Lisp implementation to Lisp implementation.

10. Conclusions
Two moderate-sized applications, SOAR and BBl, were benchmarked on 22
Common Lisp systems to help in the evaluation of different Common Lisp
systems. The run and compile times for these benchmarks were presented
and discussed. A large variation was observed between the ranking of
systems when running the SOAR test versus the ranking when running the
BBl test,. This leads us to conclude that while these experimental results and
ones like them can be used to class machines together roughly, it is
impossible to use such a set of benchmarks to decide in advance how a given
application will perform on a given system. There is no substitute for
actually running the program on the systems in question.
Figure 12 shows the average of the normalized1 run times for the test
programs with the systems ranked in order. On the basis of this data, the
systems tested may be ranked as follows:

1 The data were normalized by dividing each by the average of the results for all the tested
implementations.

E. H. Shortliffe 246

5 P41 RROO785-16 Appendix B: Lisp Performance Studies

Very Fast (I 0.50 anr -- averaged normalized run time): TI Explorer II Plus
$;;;;A ~‘1 E xp 1 orer II (Exp2), and Sun 4 with Lucid Lisp (4/280 and

Fast (> 0.50 am, I 1.00 anr): TI microExplorer (mX), Compaq 386 (386), Sun
4 with Franz Lisp (F-4/280), Compaq 386 portable (386T), Sun 3/260
(3/260), IBM RT/APC (RT), and Sun 3160

Medium (> 1.00 am, I 1.50 am): Symbolics 3645 Gym), Sun 3/75 with Lucid
Lisp (L-3/75), HP 9000/350 (HP), TI Explorer I (Expl), and DEC MicroVax
III (DEC-III)

Slow (> 1.50 am, 22.50 am-): Symbolics MacIvory (Maci), Sun 3175 with
Kyoto Common Lisp (K-3/75), and Sun 3/75 with old Franz Extended
Common Lisp (E-3/75)

Very Slow (> 2.50 anr): Apple Macintosh II with Allegro Lisp (Mac2), DEC
MicroVax II (DEC-II), and Xerox 1186 (XCL),

E-3/75
K-3/75

Mac1
DEC-III

Expl
HP

L-3175

W
3/60

RT
31260

3861

F-41280

386
mX

41260
4/280

ExpZ
Exp2+

+

2,XCL,andDEC-I Note, M with
scores of 3.36,5 37, and 698,have

beenleftoff toimprovereadability
I I I I I I
I I 1

0 00 025 0.50 0 75 100 1.25 1.50 I75 200 225 250
Figure 12: Averaged Normalized Run Tlmes

We were surprised at the high speed of the small 386 machines, and at the
slowness of the still early MacIvory, the DEC machines, and the Xerox
machine.
Dedicated Lisp machines compile relatively faster than conventional
machines, and, generally, conventional machine systems that took more time
to compile produced faster code, as one would expect.

247 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5 P41 RR0078516

While the experiment to measure the effect of different settings of the
OPTIMZE declaration was interesting, with such a small sample no real
conclusion about the effect of various OPTIMIZE settings can be drawn.
However the indications are that, in the absence of other declarations (e.g..
for TYPE), only relatively small gains are available. It is probably best to
experiment with various settings to see which gets the best speed for a given
program.
Reducing the amount of output that a program generates can have a large
effect on the run time of the program, especially when moving the program to
a faster machine. This indicates that it is worth taking some time to consider
the nature of the I/O system and interaction needed by a program when
designing a user interface for a fast-running program.
These results must be used very carefully since they represent only one piece
of information about the performance of the very complex systems tested. We
have measured only execution speed, but many aspects of the software will
impact the development of programs such that in a given amount of time a
program might be written for one machine that runs faster and perhaps with
fewer errors than a program written in the same amount of time on another
machine that ranks faster in these tests due to superior support given to the
programmer during development. Do not underestimate the power of the
programming environment.

11. Acknowledgements
This work would have been completely impossible without the assistance of
many people and companies. Mike Kramer of Texas Instruments Inc.
supplied the Explorer II Plus processor board. Eric Warner and Michael
Borke of Sun Microsystems Inc. supplied access to the Sun 4 systems and the
Sun 3/260 and 3/60 systems. Franz Inc. supplied a test version of Extended
Common Lisp. Marty Hollander of Franz Inc. supplied a version of Allegro
Common Lisp for the Sun 4. Jeff Harvey of Digital Equipment Corp.
arranged access to the MicroVax systems. Susan Rosenbaum and Eric
Gilbert of Lucid Inc. supplied access to the Compaq machines and the IBM
RT. Bruce Hamilton of Hewlett Packard Inc. arranged access to the HP 9000.
Many thanks to all of them.

12. References
[Gabriel 19851 Gabriel, R. P. Performan ce and Evaluation of Lisp

Programs, M.I.T. Press, Cambridge, Massachusetts, 1985.
[Hayes-Roth 19851 H ayes-Roth, B. A Blackboard Architecture for Control, in

Artificial Intelligence Journal, Volume 26, pp. 251-321, July 1985.
[Hayes-Roth 19881 H ayes-Roth, B., and Hewett, M. BB1: An

Implementation of the Blackboard Control Architecture, in Blackboard
Systems, edited by Robert Engelmore and Tony Morgan, Addison-Wesley,
1988, pp. 297-313.

E. H. Shortliffe 248

5 P41 RR00785-16 Appendix B: Lisp Performance Studies

[Laird 19871 Laird, J. E., Newell, A., and Rosenbloom, P. S. Soar: An
Architecture for General Intelligence, in Artificial Intelligence Volume 33,
Number 1, pp. l-64, 1987.

[Steele 19841 Steele, G. L. Jr. Common Lisp the Language, Digital Press.
1984

249 E. H. Shortliffe

Appendix B: Lisp Performance Studies 5P41RROO785-16

Appendix A -- System Descriptions
This appendix contains detailed descriptions of the systems used in these
measurements. In the descriptions, “Code” refers to a short name used to
indicate the systems under test. Usually it is the model of the machine
except where there is more than one Lisp for a machine (as in the case of the
Sun 3/75) in which case a letter is prefixed to indicate the Lisp being used.
“Timing Template” indicates how the information reported by the TIME
macro was recorded. “Elapsed” indicates the total elapsed time, “run”
indicates CPU time used, ‘gc” indicates time spent in garbage collection,
“user” and “system’ distinguish between user mode and kernel mode time,
and “paging” indicates time waiting for virtual memory disk operations.Code:
Code: 3/260
Computer Type: Sun 31260
Operating System: Sun OS 3.4
Lisp: Lucid 2.0
Disk Configuration: 280MB
Swapping Size: 6OMB
Memory Configuration: SMB
Display Configuration: Color in mono mode
Other Configuration:
Special Comments: used zEXPAND 130 :GROWTH-RATE 130
Timing Template: elapsed (user-run + system-run)
Date-of-test: Summer 1988
Code: 3160
Computer Type: Sun 3160
Operating System: Sun OS 3.4
Lisp: Lucid 2.1
Disk Configuration: SCSI 141MB
Swapping Size: unknown
Memory Configuration: 24MB
Display Configuration: Hi Res Color in mono mode
Other Confquration:
Special Comments:
Timing Template: elapsed (user-run + system-run)
Date-of-test: Summer 1988

E. H. Shortliffe 250

